斑马鱼是一种出色的模型生物,已在生物实验,药物筛查和群智能领域广泛使用。近年来,有许多用于跟踪行为研究涉及斑马鱼的技术,这使其攻击许多领域的科学家的注意力。斑马鱼的多目标跟踪仍然面临许多挑战。高流动性和不确定性使得难以预测其运动;相似的外观和纹理功能使建立外观模型变得困难。由于频繁的阻塞,甚至很难将轨迹连接起来。在本文中,我们使用粒子过滤器来近似运动的不确定性。首先,通过分析斑马鱼的运动特性,我们建立了一个有效的混合运动模型来预测其位置。然后,我们根据预测位置建立一个外观模型,以预测每个目标的姿势,同时通过比较预测的姿势和观察姿势的差来称量颗粒;最后,我们通过加权位置获得了单斑马鱼的最佳位置,并使用关节颗粒过滤器来处理多个斑马鱼的轨迹链接。
translated by 谷歌翻译
在本文中,我们提出了第四个情感行为分析(ABAW)竞争的多任务学习(MTL)挑战的解决方案。ABAW的任务是从视频中预测框架级的情感描述:离散的情绪状态;价和唤醒;和行动单位。尽管研究人员提出了几种方法,并在ABAW中取得了有希望的结果,但目前在此任务中的作品很少考虑不同的情感描述符之间的相互作用。为此,我们提出了一种新颖的端到端体系结构,以实现不同类型的信息的完整集成。实验结果证明了我们提出的解决方案的有效性。
translated by 谷歌翻译
可重新配置的智能表面(RIS)是未来无线通信系统的新兴技术。在这项工作中,我们考虑由RIS启用的下行链路空间多路复用,以获得加权和速率(WSR)最大化。在文献中,大多数解决方案使用交替的基于梯度的优化,具有中等性能,高复杂性和有限的可扩展性。我们建议应用完全卷积的网络(FCN)来解决这个问题,最初是为图像的语义分割而设计的。 RIS的矩形形状和具有相邻RIS天线的通道的空间相关性由于它们之间的短距离而鼓励我们将其应用于RIS配置。我们设计一组通道功能,包括通过RIS和Direct通道的级联通道。在基站(BS)中,可分离的最小均方平方误差(MMSE)预编码器用于预测,然后应用加权最小均方误差(WMMSE)预编码器以进行微调,这是不增强的,更复杂的,但实现更好的表现。评价结果表明,该解决方案具有更高的性能,允许比基线更快的评估。因此,它可以更好地缩放到大量的天线,推进RIS更接近实际部署的步骤。
translated by 谷歌翻译
为了支持各种任务和处理不同的飞行环境,无人机控制程序通常提供可配置的控制参数。但是,这种灵活性引入了漏洞。最近已识别出一种称为范围规范错误的这种漏洞。该漏洞起源于即使每个单独的参数在推荐值范围内接收值,也可能影响无人机物理稳定性的某些组合。在本文中,我们开发了一种新颖的学习引导的搜索系统来寻找这样的组合,即我们称之为不正确的配置。我们的系统应用了Metaheuristic Search算法突变配置,以检测将无人机驱动到不稳定物理状态的值的配置参数。为了引导突变,我们的系统利用机器学习预测因子作为健身评估。最后,通过利用多目标优化,我们的系统基于突变搜索结果返回可行的范围。由于在我们的系统中,突变由预测器引导,评估参数配置不需要现实/仿真执行。因此,我们的系统支持全面但有效地检测不正确的配置。我们对我们的系统进行了实验评估。评估结果表明,该系统成功地报告了可能不正确的配置,其中85%以上导致实际不稳定的物理状态。
translated by 谷歌翻译
基于模型的强化学习方法在许多任务中实现了显着的样本效率,但它们的性能通常受模型错误的存在限制。为减少模型错误,以前的作品使用单一设计的网络来符合整个环境动态,将环境动态视为黑匣子。然而,这些方法缺乏考虑动态可能包含多个子动态的环境分解性,这可以单独建模,允许我们更准确地构建世界模型。在本文中,我们提出了环境动态分解(ED2),这是一种以分解方式模拟环境的新型世界模型施工框架。 ED2包含两个关键组件:子动力学发现(SD2)和动态分解预测(D2P)。 SD2发现环境中的子动力学,然后D2P构建子动力学后的分解世界模型。 ED2可以容易地与现有的MBRL算法和经验结果表明,ED2显着降低了模型误差,并提高了各种任务上最先进的MBRL算法的性能。
translated by 谷歌翻译
移动和金融技术的繁荣已经为更广泛的人们培育和扩展了各种金融产品,这有助于倡导金融包容。它具有递减金融不平等的非琐碎的社会效益。然而,由独特的特征分布和新用户的信用史有限造成的个人金融风险评估的技术挑战,以及新用户的缺乏经验,在处理复杂数据和获得准确的标签方面,妨碍了进一步推动金融包容性。为了解决这些挑战,本文开发了一种新颖的转移学习算法(即转换),其结合了基于树的模型和内核方法的优点。 Transpoost设计具有平行树结构和有效的重量更新机制,具有理论上的保证,使其能够以$ O(n)$时间复杂度的高维特征和稀疏性在解决现实世界数据中。我们对两个公共数据集进行了广泛的实验,以及腾讯移动支付的独特大规模数据集。结果表明,在具有卓越效率的预测精度方面,转换越野越优于其他最先进的基准传输学习算法,表现出对数据稀疏性的更强的鲁棒性,并提供有意义的模型解释。此外,鉴于财务风险等级,转博稳定使金融服务提供商能够满足最多的用户,包括其他算法。也就是说,转船改善了金融包容性。
translated by 谷歌翻译
高级综合(HLS)释放了计算机架构师以非常低级的语言开发他们的设计,并需要准确指定如何在寄存器级别传输数据。在HLS的帮助下,硬件设计人员必须只描述设计的高级行为流程。尽管如此,它仍然可能需要数周才能开发高性能架构,主要是因为在更高的水平下有许多设计选择需要更多的时间来探索。它还需要几分钟才能从HLS工具上获得每个设计候选人的质量的反馈。在本文中,我们建议通过使用培训的图形神经网络(GNN)来建立HLS工具来解决这个问题,该工具被培训用于广泛的应用程序。实验结果表明,通过采用基于GNN的模型,我们能够以高精度估计毫秒的设计质量,这可以帮助我们非常快速地搜索解决方案空间。
translated by 谷歌翻译
跨度提取,旨在从纯文本中提取文本跨度(如单词或短语),是信息提取中的基本过程。最近的作品介绍了通过将跨度提取任务正式化为问题(QA正式化)的跨度提取任务来提高文本表示,以实现最先进的表现。然而,QA正规化并没有充分利用标签知识并遭受培训/推理的低效率。为了解决这些问题,我们介绍了一种新的范例来整合标签知识,并进一步提出一个小说模型,明确有效地将标签知识集成到文本表示中。具体而言,它独立地编码文本和标签注释,然后将标签知识集成到文本表示中,并使用精心设计的语义融合模块进行文本表示。我们在三个典型的跨度提取任务中进行广泛的实验:扁平的网,嵌套网和事件检测。实证结果表明,我们的方法在四个基准测试中实现了最先进的性能,而且分别将培训时间和推理时间降低76%和77%,与QA形式化范例相比。我们的代码和数据可在https://github.com/apkepers/lear中获得。
translated by 谷歌翻译
最近,图形卷积网络(GCNS)已成为用于分析非欧几里德图数据的最先进的算法。然而,实现有效的GCN训练,特别是在大图中挑战。原因是许多折叠的原因:1)GCN训练引发了大量的内存占用。大图中的全批量培训甚至需要数百到数千千兆字节的内存,以缓冲中间数据进行反向传播。 2)GCN培训涉及内存密集型数据减少和计算密集型功能/渐变更新操作。这种异构性质挑战当前的CPU / GPU平台。 3)图形的不规则性和复杂的训练数据流共同增加了提高GCN培训系统效率的难度。本文提出了一种混合架构来解决这些挑战的混合架构。具体地,GCNEAR采用基于DIMM的存储系统,提供易于级别的存储器容量。为了匹配异构性质,我们将GCN培训操作分类为内存密集型减少和计算密集型更新操作。然后,我们卸载将操作减少到DIMM NMES,充分利用高聚合的本地带宽。我们采用具有足够计算能力的CAE来处理更新操作。我们进一步提出了几种优化策略来处理GCN任务的不规则,提高GCNEAR的表现。我们还提出了一种多GCNEAR系统来评估GCNEAR的可扩展性。
translated by 谷歌翻译
KL-regularized reinforcement learning from expert demonstrations has proved successful in improving the sample efficiency of deep reinforcement learning algorithms, allowing them to be applied to challenging physical real-world tasks. However, we show that KL-regularized reinforcement learning with behavioral reference policies derived from expert demonstrations can suffer from pathological training dynamics that can lead to slow, unstable, and suboptimal online learning. We show empirically that the pathology occurs for commonly chosen behavioral policy classes and demonstrate its impact on sample efficiency and online policy performance. Finally, we show that the pathology can be remedied by non-parametric behavioral reference policies and that this allows KL-regularized reinforcement learning to significantly outperform state-of-the-art approaches on a variety of challenging locomotion and dexterous hand manipulation tasks.
translated by 谷歌翻译